Реверсное подключение электродвигателя через магнитный пускатель

Содержание

Реверсивная схема подключения магнитного пускателя

Реверсное подключение электродвигателя через магнитный пускатель

Электродвигатели используются в подавляющем большинстве для приводных механизмов и самостоятельных агрегатов. Когда требуется изменение направления вращения его вала, для пуска применяют реверсивный пускатель, схема подключения которого является объектом изучения профессионалов и простых обывателей.

Как устроен и для чего нужен пускатель?

Как можно логически определить из названия, это устройство предназначено для пуска электродвигателей различных приводных механизмов и техники. Это специфическое оборудование, которое необходимо для коммутации силовых целей с большими нагрузками, как на постоянном, так и на переменном токе.

Пускатель обладает более широким функционалом, нежели базовый контактор и кроме обеспечения частых пусков и остановок, может выступать в роли защитного барьера при перегрузках.

Кроме этого, реверсивный и нереверсивный пускатели, например, серии ПМЛ, нашел свое применение при организации дистанционных схем управления, пуска насосных, вентиляционных, крановых агрегатов, кондиционеров и т.д.

Любой магнитный пускатель состоит из следующих основных частей:

  • Электромагнитная часть. Она состоит из катушки и разъединенных магнитопроводов – неподвижного сердечника и подвижного якоря,
  • Блок главных контактов. Они нужны для замыкания/размыкания силовых мощных нагрузок. С учетом параметров пускателя, он может иметь до 5 пар контактов. Одна их половина расположена на траверсе якоря, а другая – на верхней части корпуса,
  • Блокирующие контакты. Они используются при коммутации управляющих цепей схемы, например, когда включение/остановка происходит пусковыми кнопками. Происходит блокировка основных контактов, а значит, устраняется необходимость удерживания кнопки управления,
  • Возвратный механизм. По сути, это просто пружина, которая при размыкании контактов возвращает якорь в исходное положение, обеспечивая необходимый зазор между парами.

Разница между прямым и реверсивным пускателями

Главное отличие нереверсивного и реверсивного пусковых устройств, состоит в схеме подключения. Также меняется комплектация. Контактор прямого типа является одиночным, тогда как реверсивный – блочным, состоящим из двух прямых, объединенных в одном корпусе. Визуальные отличия этих двух реле можно видеть на сравнении моделей ПМЛ-1100 (слева) и ПМЛ-1500 (справа):

При этом, должно соблюдаться одно крайне важное условие: реверсивное соединение пускателей должно полностью исключать возможность их одновременного срабатывания. Это неизбежно приведет к возникновению явления короткого замыкания.

Схема подключения реверсивного магнитного пускателя электродвигателей делится на два основных вида:

  1. Подключение к сети с напряжением 220 В,
  2. Запуск контактора на 380 В.

Далее рассмотрим подробнее каждый из вариантов, опираясь на уже упомянутые модели контакторов ПМЛ серии 1500.

Вид и функционирование реверсивной схемы на 220 В

На этой монтажной схеме можно видеть следующие основные элементы (обозначены цифрами):

  1. Блокирующие или блок-контакты,
  2. Катушки магнитных пускателей, рассчитанные на напряжение питания 220 В,
  3. Контакты тепловой или токовой защиты (релейные элементы),
  4. Силовые контакты пускателей.

Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Вид реверсивной схемы на 220 В

Кроме этого, буквенно-числовыми обозначениями выделяются:

  • МП-1, МП-2 – магнитные пускатели. Их границы на схеме выделены штриховыми линиями,
  • Стоп, Пуск – органы управления (сам блок выделен штриховой линией). Отдельно выделена лишь кнопка Стоп. Пусковые кнопки (прямой ход и реверс) обозначены, как две пары контактов, связанных с пускателями МП-1 и МП-2,
  • М – электродвигатель.

Принцип функционирования

Как можно видеть, на силовые контакты пускателей подводятся три разноименные фазы от сети 380 В. На приведенной схеме обозначения нет никакого, но в других случаях можно встретить символы А, В, С или L1, L2, L3. Организовывается блочная связка путем прямой перемычки центральных фаз реле, а также диагональных перемычек боковых фаз (условно 1 фаза МП-1 соединяется с 3 фазой МП-2 и т.д).

После этого провода идут на электродвигатель М. На этом промежутке, в разрыв цепи подключается тепловое реле. Оно осуществляет контроль двух из трех фаз, чтобы при перегрузке отключить питание двигателя.

Блок управления с пусковыми кнопками подключается от одной из центральных фаз в разрыв теплового реле, и нулевого провода (заземления) от катушек пускателей ПМЛ. Защита от одновременного включения пускателей организовывается путем перекрестного соединения контактов кнопок пуска/реверса с блокирующими контактами противоположного контактора.

При включении с блока управления прямого хода, замыкаются контакты на первый пускатель, который запускает двигатель. Одновременно, контакты второго пускателя размыкаются, а на катушку не поступает должное напряжение.

Включение реверса происходит после остановки двигателя кнопкой Стоп с последующим нажатием обратного хода. Таким образом, мы имеем на катушках измененные местами боковые фазы, что приводит к вращению двигателя в обратную сторону. Блокирование первого пускателя происходит по аналогичному принципу.

Вид и функционирование реверсивной схемы на 380 В

Здесь мы имеем, фактически, все те же элементы, что используются для ПМЛ на 220 В, но катушки пускателей рассчитаны на более высокое напряжение (имеют больше витков). Кроме того, отличием от предыдущей схемы является подключение блока управления не через одну, а через две фазы, не используя общий ноль.

Вид реверсивной схемы на 380 В

Где еще используются реверсивные пускатели?

Область применения двойных пусковых реле довольно широка. Она не ограничивается одними только электродвигателями. Необходимость изменения направления вращения или перемещения приводных механизмов может возникнуть также в других случаях.

К примеру, каждый человек имеет дома систему водоснабжения, отопления, где всегда есть место различной запорной арматуре. Для промышленных масштабов, при больших расходах, диаметрах трубопроводов, большой точности контроля расхода, обычными кранами не обойтись. Здесь используются задвижки электрической, а также механической системой управления рабочим органом. Вращение диска или перемещение задвижки происходит в разных направлениях, а значит, применение реверсивных схем пуска обосновано.

Не удаляясь далеко, можно найти реверсивные пускатели типа ПМЛ или другие в подъемной системе лифтов. Движение вверх-вниз происходит за счет изменения направления вращения главного барабана.

Изменение направления вращения двигателя, связанных с ним исполнительных механизмов – довольно востребованная процедура. При этом питание от трехфазной сети происходит через промежуточное коммутирующее реле – реверсивный магнитный пускатель типа ПМЛ 1500 или любой другой.

Источник: https://electricvdele.ru/elektrooborudovanie/elektrodvigateli/reversivnyj-puskatel-shema-podklyucheniya.html

Подключение реверсивного пускателя через кнопочный пост

Реверсное подключение электродвигателя через магнитный пускатель

Использование реверсивной схемы управления даёт возможность запустить электродвигатель как в прямом, так и в обратном направлении, а также остановить его в нужный момент.

По сравнению с технологией подключения пускателя для одинарной схемы, потребуется дополнительная цепь управления и некоторые изменения в силовой части.

Пускатель

Действие самого пускового электромагнита заключается в следующем: если подать на его катушку напряжение, то сердечник (к которому прикреплены пары контактов) втянется внутрь катушки. Это позволит контактам замкнуться. Если напряжение будет снято, то соответственно произойдёт размыкание контактов.

Когда пускатель срабатывает, то все четыре пары его контактов замыкаются при этом коммутируют основной объём нагрузки лишь три пары (1-2, 3-4, 5-7), а четвёртая (блок-контакт) подаёт напряжение в момент опускания кнопки «Пуск».

Кнопочный пост

Стандартный кнопочный пост для реверсивного двигателя подразумевает трёхкнопочную конструкцию: нормально-разомкнутые кнопки «Вперёд» и «Назад» (чёрные) и нормально-замкнутая кнопка «Стоп» (красная). Кнопки поста ничем не различаются — у каждой в наличии по 2 контакта (4 клеммы). Разница в функциональном значении возникает из-за разницы в принципе подключения.

Если взглянуть с «изнанки», то можно увидеть нумерацию клемм для каждой кнопки (1, 2, 3, 4). Изначально пара 1-2 разомкнута, а 3-4 замкнута. Во время нажатия кнопки: 1-2 замыкается, а 3-4 размыкается.

Особенности подключения пускателя

Для тех, кому не принципиально самостоятельное подключение пускателя, возможно приобретение уже объединённого с кнопочным постом экземпляра. Его потребуется только подключить к питанию.

Всем остальным понадобятся некоторые разъяснения.

До того, как приступать к подключению магнитного пускателя потребуется:

  • Обесточить весь фронт работ. Для пущей достоверности проверить возможное наличие напряжения при помощи специальных индикаторов.
  • Уточнить подходящий для выбранной катушки диапазон рабочего напряжения (380 вольт и 220 вольт). В случае, если это 220 В, требуется подать на катушку фазу и ноль. При 380 В — должны быть разноимённые фазы. Если это не учитывать, то разность напряжений выведет прибор из строя.

В большинстве случаев магнитный пускатель и двигатель соединяются через тепловое реле. Этот необходимо для обеспечения безопасного поступления тока к устройству, а также даёт возможность не прекращать рабочий процесс, даже если одна из фаз перегорела.

Чтобы вращение электродвигателя изменило направление, две из трёх используемых фаз должны быть поменяны местами (например, вместо ABC — CBA). Обеспечить такую смену фаз помогает дополнительный пускатель. Проблема в том, что одновременное выключение двух приборов может вызвать короткое замыкание. Эта ситуация благополучно избегается благодаря постоянно-замкнутым контактам. Они обеспечивают разрыв одной цепи или просто блокируют её. Есть вариант и с механической блокировкой второго пускателя.

Читайте также  Электродвигатель для дровокола конусного

Процесс подключения

К прибору подключаются три разноимённого характера фазы (A, B, C). После этого они перенаправляются к силовым контактам пускателей КМ1 (A1, B1, C1) и КМ2 (A2, B2, C2).

Между центральными фазами B1-B2, а также между A1-C2 и C1-A2 делаются перемычки. К электродвигателю фазы, как уже говорилось ранее, проводятся через тепловое реле, которое по сути отвечает за контроль всего лишь двух фаз, поскольку они взаимозависимы. Если сила тока в одной увеличится, то и в другой происходит то же самое. В критической ситуации будут разомкнуты обе катушки.

Нужно учитывать, что центральная фаза (та, которая не меняет своего положения при смене направления работы двигателя) отвечает за питание всей цепи и проходит через защитный автомат, схему управления и кнопку «Стоп».

Лишь после этого подаётся нужная сила напряжения для контактной группы (кнопки «Вперёд» и «Назад»).  Кроме этого существует «дежурный» контакт, он дублирует контактную группу.

Кнопка » Вперёд» имеет параллельное соединение с нормально-разомкнутым вспомогательным контактом пускателя КМ1. Аналогично, кнопка «Назад» соединяется с нормально-разомкнутым вспомогательным контактом КМ2.

Чтобы гарантировать рабочую стабильность, цепь питания обмотки пускателя КМ1 включает в себя нормально-замкнутый контакт пускателя КМ2, и наоборот. В результате запуск двигателя по любому направлению возможен только после полной остановки.

Принцип действия

Как только к трёхкнопочному выключателю подведён источник питания — устройство готово к работе.

При нажатии кнопки «Вперёд»: происходит замыкание цепи питания обмотки у КМ1, сердцевина катушки погружается, что вызывает замыкание силовых контактов. Одновременно с этим цепь управления КМ2 размыкается, благодаря включённому в неё вспомогательному контакту КМ1. Когда кнопка отпускается, питание продолжает подаваться по замкнутому вспомогательному контакту КМ1.

При нажатии кнопки «Назад» картина аналогичная, а если воспользоваться кнопкой «Стоп», то сердцевина КМ1 благодаря действию пружины вернётся в исходное положение, и работа прекратится.

ссылкой:

Источник: https://elektronchic.ru/elektrotexnika/podklyuchenie-reversivnogo-puskatelya.html

Схемы подключения магнитного пускателя

Реверсное подключение электродвигателя через магнитный пускатель

Пускатель, схема “звезда-треугольник”

Сразу отсылаю читателя к статьям, которые предшествуют этой – Виды и отличия контакторов и пускателей, и Подключение асинхронного электродвигателя. Очень рекомендую ознакомиться, перед дальнейшим чтением.

Скажу также, что на языке электриков “контактор” и “пускатель” очень переплетены, и я в статье буду говорить и так, и эдак.

Повторюсь, чтобы освежить в памяти. Магнитный пускатель – устройство, которое обязательно содержит контактор (как главный коммутационный элемент), а также может содержать:

  • мотор-автомат либо защитный автомат (как устройство рабочего или аварийного отключения),
  • тепловое реле (как устройство аварийного отключения при перегрузке и обрыве фазы),
  • кнопки “Пуск”, “Стоп”, различные переключатели режимов схемы,
  • схема управления (может содержать те же кнопки, а может – контроллер),
  • индикация работы и аварии.

Различные схемы подключения магнитных пускателей и их отличия рассмотрим ниже.

Типовая схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских станках и другом простом оборудовании на 2-3 двигателя используется и по сей день.

Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “Пуск” и “Стоп” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

Пример такой схемы – в статье про восстановление схемы гидравлического пресса, см. последнюю в статье схему, пускатель КМ0.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).

Часто в таких схемах пускатель не включается из-за того, что у этой кнопки “подгорают” контакты.

На схеме не показан защитный автомат цепи управления, он ставится последовательно с кнопкой “Стоп”, номинал – несколько ампер.

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Не путать с блокировкой в реверсивных схемах, см. ниже.

Контакты “Самоподхвата” физически расположены на одном креплении с силовыми контактами контактора, и работают одновременно.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Часто в таких схемах бывает, что пускатель не становится на “самоподхват”. Дело в том самом четвертом контакте.

Схема подключения пускателя с тепловым реле

В схеме выше я упустил из виду тепловую защиту ради простоты схемы. На практике обязательно применяют тепловое реле типа РТЛ (по крайней мере, это было принято до 2000 г. у нас и до 1990 г. у “них”)

6. Схема подключения пускателя с кнопками и тепловым реле

Как только ток двигателя возрастает выше установленного (из-за перегрузки, пропадания фазы) – контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя рвётся.

Таким образом, тепловое реле выполняет роль кнопки “Стоп”, и стоит в той же цепи, последовательно. Где его поставить – не особо важно, можно на участке схемы L1 – 1, если это удобно в монтаже.

Однако, тепловое реле не спасает от КЗ на корпус и между фазами. Поэтому в таких схемах обязательно ставят защитный автомат, как показано на схеме 7:

7. Схема подключения пускателя с кнопками автоматом и тепловым реле. ПРАКТИЧЕСКАЯ СХЕМА

Внимание! Цепь управления (цепь, через которую питается катушка пускателя КМ) должна обязательно быть защищена автоматом с током не более 10А. Данный защитный автомат на схеме не показан. Спасибо внимательным читателям!)

Ток защитного автомата двигателя QF не надо подбирать так тщательно, как в схеме 3, поскольку с тепловой перегрузкой справится РТЛ. Достаточно, чтобы он защищал подходящие провода от перегрева.

Пример. Двигатель 1,5кВт, ток по каждой фазе 3А, ток теплового реле – 3,5 А. Провода питания двигателя можно взять 1,5 мм2. Ток они держат до 16А. И автомат вроде можно поставить на 16А? Однако, не надо действовать топорно. Лучше поставить что-то среднее – 6 или 10А.

Схема подключения магнитного пускателя от контроллера

Последние 10 лет в новой промышленной автоматике широко применяются контроллеры. Катушки пускателей также включаются с выходов контроллера. И в данном случае для защиты от КЗ и теплового перегрева используется схема подключения двигателя номер 8:

8. Схема подключения пускателя с управлением от контроллера. ПРАКТИЧЕСКАЯ СХЕМА

На схеме QF – это мотор-автомат, или автомат защиты двигателя, как в схеме 4. Только изобразил я его по современному. В данном схема подключения пускателя “спрятана” в пунктире. Там находится контроллер, который всем управляет, и включает двигатель согласно программе, заложенной в нём.

При перегрузке двигателя мотор-автомат его отключает, и размыкает свой дополнительный (четвертый, сигнальный) контакт. Это необходимо только для того, чтобы “проинформировать” контроллер о аварии. Часто этот контакт просто-напросто входит в контрольную цепь, и останавливает весь станок.

 Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Реверсивное управление электродвигателем

Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.

Правое вращение (применяется чаще всего) – когда двигатель крутится по часовой стрелке, если смотреть ему “в зад”. Левое вращение – против часовой.

Смена направления вращения реализуется общеизвестным способом – меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:

9. Схема подключения реверсивного магнитного пускателя на 220В с управлением от кнопок. ПРАКТИЧЕСКАЯ СХЕМА

Когда включен пускатель КМ1, это будет “правое” вращение. Когда включается КМ2 – первая и третья фазы меняются местами, движок будет крутиться “влево”. Включение пускателей КМ1 и КМ2 реализуется разными кнопками “Пуск вперед” и “Пуск назад“, выключение – одной, общей кнопкой “Стоп” , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает “защиту от дурака”. Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, “Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!” А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это – электрическая защита от того же дурака. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки “Пуск” сразу, ничего не получится – двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую – моветон среди электриков.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

Читайте также  Улитка воздушная с электродвигателем

Реверсивное управление гидравликой

А вот пример реверсивного управления клапанами, из статьи про гидравлический пресс:

Электрическая схема управления гидравликой

То, что применяются реле, не должно сбивать с толку. Фактически контактор и реле – суть одно устройство, отличие только в конструкции и параметрах.

Фактически, схема повторяет схему для двигателя, только вместо кнопки “Стоп” – два концевых выключателя, и кнопки SB1, SB2 – с дополнительными блокировочными НЗ контактами. Подробное описание работы схемы – здесь.

Работа реверсивного пускателя также подробно описана в статье про подключение генератора к сети дома.

Различие пускателей на 220В и 380В

Катушки магнитных пускателей для работы в сетях 380В могут быть на 220 и 380 Вольт без особых переделок схемы. Во всех схемах, приведённых в этой статье, электромагнитные пускатели имеют катушку на напряжение 220 В. Что же делать, если в руки попал пускатель не на 220В, а на 380В?

Всё очень просто – надо нижний (по схеме) вывод катушки пускателя на 380В подключить не к нулю (N), а к L2 или L3. Эта схема даже более предпочтительна, так как вся схема с пускателем на 380В может быть собрана вообще без нуля. Три фазы приходят, и три фазы уходят на двигатель, не считая управления.

Варианты нагрузок

К выходу магнитного пускателя можно подключить что душе угодно, не только двигателя, как в статье. Привожу примеры статей, в которых через пускатели включаются ТЭНы:

Ремонт и устройство конвектомата,

Схема промышленного калорифера.

Вот как интересно вещает на тему статьи Алекс Жук:

На этом всё, жду комментариев и обмена опытом!

Поставьте оценку, и почитайте другие статьи блога!
(9 4,78 из 5)
Загрузка…

Источник: https://samelectric.ru/promyshlennoe-2/shemy-podklyucheniya-magnitnogo-puskatelya-2.html

Работа схемы

Переводим рычаг трехполюсного автоматического выключателя во включенное положение, его контакты замыкаются, схема готова к работе.

Запуск вперед

Нажимаем кнопку ВПЕРЕД.Цепь питания обмотки магнитного пускателя  КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД

Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя. 

Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

Отпускаем кнопку ВПЕРЕД, она возвращается в исходное нормально-разомкнутое состояние. Теперь питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

Останов двигателя из положения ВПЕРЕД

Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП. Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкаетсявспомогательный контакт КМ1 в цепи питания пускателя КМ2.

Отпускаем кнопку СТОП. Она возвращается в исходное, нормально-замкнутое положение. Но  поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

Реверс двигателя

Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД.

Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД. Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

Отпускаем кнопку НАЗАД. Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

Останов двигателя из положения НАЗАД

Для останова повторно нажимаем кнопку СТОП. Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

Отпускаем кнопку СТОП, схема готова к следующему пуску.

Защита от перегрузок

Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя, поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В,  схема подключения будет следующая.

Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Если видео понравилось, не забывайте нажать НРАВИТЬСЯ при просмотре на . Подписывайтесь на мой канал, узнайте первым о выходе новых интересных видео по электрике!

Не забудьте посмотреть новые статьи сайта.

Рекомендую также прочитать:

Нереверсивная схема подключения магнитного пускателя.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Номиналы групповых автоматов превышают номинал вводного?

Менять ли автоматический выключатель, если его «выбивает»?

Почему в жару срабатывает автоматический выключатель?

Источник: http://elektrik-sam.info/reversivnaya-shema-podklyucheniya-magnitnogo-puskatelya/

Схема подключения реверсивного магнитного пускателя

Реверсное подключение электродвигателя через магнитный пускатель

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.

Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.

На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.

В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.

Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.

Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.

1. Исходное состояние схемы

При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.

Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.

На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.

2. Работа цепей управления при вращении двигателя влево

При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.

Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.

На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.

3. Работа цепей управления при вращении двигателя вправо

Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.

Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.

При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:

Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1.2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.

Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.

4. Силовые цепи

А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.

Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.

Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.

А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.

Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.

Читайте также  Можно ли использовать стартер как электродвигатель?

Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».

Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.

5. Защита силовых цепей от короткого замыкания или «защита от дурака»

Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.

Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».

А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.

6. Заключение

Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.

И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.

А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.Продолжение следует.

Удачи!

Источник: https://sesaga.ru/sxema-podklyucheniya-reversivnogo-magnitnogo-puskatelya.html

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Реверсное подключение электродвигателя через магнитный пускатель

Электромагнитный пускатель являет собой низковольтное комбинированное электромеханическое приспособление, специализированное для запуска трёхфазных электродвигателей, для обеспечения их постоянной работы, для отключения питания, а в некоторых случаях и для охраны цепей электродвигателя и иных подключённых цепей. Определённые двигатели обладают функцией реверса мотора.

По сущности, электромагнитный пускатель — это улучшенный, изменённый контактор. Но более компактный, нежели контактор в обычном понятии: легче по весу и рассчитан непосредственно для работы с двигателями. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Для управления запуском мотора путём замыкания контактов устройства предназначается клавиша или слаботочная группа контактов:

  • с катушкой на определённое напряжение;
  • в некоторых случаях — и то и другое.

В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. При выключении питания катушки возвратная пружинка перемещает якорь в противоположное положение — цепь размыкается. Каждый контакт находится в дугогасительной специальной камере.

Реверсивные и нереверсивные пускатели

Устройства бывают различных видов и выполняют все поставленные задачи.

Пускатели бывают двух типов:

  • нереверсивные;
  • реверсионные.

В реверсивном пускателе в одном корпусе существуют два единичных магнитных устройства, имеющих электрическое подсоединение между собой и прикреплённых в совокупном основании, но функционировать может только один из данных пускателей — или только первый, или только второй.

Реверсивный прибор вводится через естественно-закрытые блокировочные контакты, роль которых — устранить синхронное включение двух групп контактов — реверсивной и нереверсивной, для того чтобы не случилось межфазного замыкания. Определённые модификации реверсивных пускателей для предоставления этой же функции имеют защиту. Фазы питания возможно переключать по очереди для того, чтобы выполнялась главная функция реверсивного пускателя — перемена направления вращения электродвигателя. Изменился порядок чередования фаз — поменялось и направление ротора.

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки. Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Распространение этих модификаций становится все обширнее с каждым годом, так как они помогают управлять асинхронным двигателем на дистанции. Это приспособление даёт возможность как включать, так и отключать мотор.

Корпус реверсивного пускателя состоит из таких следующих частей:

  1. Контактор.
  2. Тепловое микрореле.
  3. Кожух.
  4. Инструменты управления.

После того как поступила команда «Пуск», цепь замыкается. Далее ток начинает передаваться на катушку. В это же время действует механическое блокирующее приспособление, которое не дает запуститься ненужным контактам.

Здесь нужно отметить, что механическая блокировка также закрывает и контакты клавиши, это дает возможность не удерживать её надавленной постоянно, а спокойно освободить. Еще одна важная часть состоит в том, что вторая клавиша этого устройства совместно с пуском всего аппарата будет размыкать электрическую цепь.

Благодаря этому даже надавливание не дает практически никакого результата, формируя дополнительную безопасность.

Особенности функционирования модели

При нажатии клавиши «Вперед» действует катушка, и вводятся контакты. Вместе с этим выполняется операция пусковой клавиши постоянно разомкнутыми контактами устройства КМ 1.3, благодаря чему при непосредственном отпускании клавиши питание на катушку действует по шунтированию.

После введения первого пускателя размыкаются именно контакты КМ 1.2, что отключает катушку К2. В итоге при непосредственном нажатии в клавишу «Назад» ничего не происходит. Для того чтобы ввести мотор в обратную сторону необходимо надавить «Стоп» и обесточить К1.

Все блокировочные контакты возвратиться могут в противоположное состояние, после этого возможно ввести мотор в противоположном направлении. Аналогично при этом вводится К2 и отключается блок с контактами. Происходит включение катушки 2 пускателя К1. К2 содержит силовые контакты КМ2, а К1- КМ1.

К кнопкам для подсоединения от пускателя следует провести пятижильный провод.

Правила подключения

В любой установке, в которой требуется пуск электродвигателя в прямом и в противоположном направлении, непременно существует электромагнитный прибор реверсивной схемы. Подсоединение подобного элемента не считается столь непростой задачей, как может показаться на первый взгляд. К тому же нужность подобных задач возникает довольно часто. К примеру, в сверловочных станках, отрезных конструкциях либо же лифтах, если это не касается домашнего применения.

Принципиальным различием трехфазной схемы от одинарной считается наличие дополнительной цепочки управления и несколько модифицированной энергосиловой части. Кроме того, для реализации переключения подобная установка оборудована клавишей. Подобная система, как правило, защищена от замыкания. Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов (КМ1.2 и КМ2.2), помещённых в позиции (КМ1 и КМ2).

Реверсивное подключение трехфазного двигателя

При работе выключателя QF1, одновременно все без исключения три фазы прилегают к контактам пускателя (КМ1 и КМ2) и находятся в таком состоянии. При этом первая стадия, представляющая собой питание для цепочки управления, протекая через аппарат защиты схемы управления SF1 и клавишу выключения SB1, непосредственно подаёт напряжение в контакты под третьим номером, который относится к SB2, SB3. При этом существующий контакт 13НО приобретает значение основного дежурного. Подобным способом система считается целиком готовой к работе.

Переключение системы при противоположном вращении

Задействовав клавишу SB2, направляем напряжение первой фазы в катушку, что относится к пускателю КМ1. Уже после этого совершается введение нормально-разомкнутых контактов и выключение нормально-замкнутых. Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. При этом все без исключения три фазы поступают в нужной обмотке двигателя, который, в свою очередь, начинает формировать вращательное перемещение.

Созданная модель предусматривает наличие одного рабочего приспособления. К примеру, может функционировать только лишь КМ1 либо же, напротив, КМ2. Отмеченная цепь обладает действительными элементами.

Изменение поворотного движения

Теперь для придания противоположного направления перемещения вам следует поменять состояние силовых фаз, что удобно совершить при помощи переключателя КМ2. Все совершается благодаря размыканию первой фазы. При этом все без исключения контакты вернутся в исходное состояние, обесточив обмотку мотора. Эта фаза считается ждущим режимом.

Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. Это влияние вынуждает мотор вращаться в противоположном направлении. Теперь КМ2 будет ведущим, и пока не случится его разъединение, КМ1 будет не задействован.

Как уже было заявлено прежде, прежде чем осуществить процесс перемены фазности, необходимо прекратить вращение мотора. Для этого в системе учтены нормально-замкнутые контакты. Поскольку при их нехватке невнимательность оператора привела бы к межфазному непосредственному замыканию, которое может случиться в обмотке мотора второй и третьей фазы. Предложенная модель считается оптимальной, поскольку допускает работу только лишь одного магнитного пускателя.

Схема подсоединения реверсивного магнитного пускателя считается ядром управления, так как много электрооборудования функционирует на реверсе, и непосредственно этот аппарат меняет направление верчения мотора.

Реверсивные схемы электромагнитных пускателей устанавливают там, где они на самом деле нужны, поскольку существуют подобные устройства, а обратный процесс недопустим и может вызвать серьёзную поломку автоматического характера.

Источник: https://tokar.guru/hochu-vse-znat/shema-podklyucheniya-reversivnogo-puskatelya.html